

Essential Objects and Services
● Device Object
● Analog, Binary, and Multi-State objects
● ReadProperty, WriteProperty
● WhoIs, I-Am
● WhoHas, Ihave
● TimeSynchronization
● ReinitializeDevice
● DeviceCommunicationControl

Device Object
● Device Instance Number
● System_Status
● Object_List
● MS/TP Properties

– Max_Master
– Max_Info_Frames

Analog, Binary, Multi-state
● Main property is Present_Value, data type is

REAL (Analog), active or inactive (Binary),
or an integer index (Multi-state).

● Common properties Object_Identifier,
Object_Name, Object_Type, Status_Flags,
Event_State

● Additional properties are object specific
● Priority Array for Output objects, optional for

Value objects.

Priority Array

9 Available

10 Available

11 Available

12 Available

13 Available

14 Available

15 Available

16 Available

1 Manual Life Safety

2 Manual Life Safety

3 Available

4 Available

5 Critical Equipment Control

6 Minimum On/Off

7 Available

8 Manual Operator

Relinquish_Default

Highest
Priority

Lowest
Priority

ReadProperty
● Required service for every BACnet device
● Used to read the value of a single property

in any object.
● The return message includes the object and

property details along with the value.
● Specific error messages are defined in

Clause 15.

ReadProperty

ReadProperty-Request ::= SEQUENCE {
 objectIdentifier [0] BACnetObjectIdentifier,
 propertyIdentifier [1] BACnetPropertyIdentifier,
 propertyArrayIndex [2] Unsigned OPTIONAL
 --used only with array datatype
 -- if omitted with an array the entire array is referenced
}

ReadProperty-ACK ::= SEQUENCE {
 objectIdentifier [0] BACnetObjectIdentifier,
 propertyIdentifier [1] BACnetPropertyIdentifier,
 propertyArrayIndex [2] Unsigned OPTIONAL,
 --used only with array datatype
 -- if omitted with an array the entire array is referenced
 propertyValue [3] ABSTRACT-SYNTAX.&Type
}

WriteProperty
● Optional service for devices
● Used to write a value to a single object

property.
● Uses a simple acknowledge - which could

be ignored initially when sequencing many
writes to improve speed.

● Specific error messages are defined in
Clause 15.

WriteProperty
WriteProperty-Request ::= SEQUENCE {
 objectIdentifier [0] BACnetObjectIdentifier,
 propertyIdentifier [1] BACnetPropertyIdentifier,
 propertyArrayIndex [2] Unsigned OPTIONAL,
 --used only with array datatype
 -- if omitted with an array the entire
 -- array is referenced
 propertyValue [3] ABSTRACT-SYNTAX.&Type,
 priority [4] Unsigned8 (1..16) OPTIONAL
 --used only when property is commandable
}

BACnet-SimpleACK-PDU ::= SEQUENCE {
 pdu-type [0] Unsigned (0..15), -- 2 for this PDU type
 reserved [1] Unsigned (0..15), -- must be set to zero
 invokeID [2] Unsigned (0..255),
 service-ACK-choice [3] BACnetConfirmedServiceChoice
 -- Context-specific tags 0..3 are NOT used in header encoding
}

WhoIs, I-Am
● Pair used for Device ID to MAC binding
● MAC is derived from source address
● Routing information is derived from NPDU
● I-Am storms, WhoIs ranges
● Most common way for Device binding.

WhoIs, I-Am

I-Am-Request ::= SEQUENCE {
 iAmDeviceIdentifier BACnetObjectIdentifier,
 maxAPDULengthAccepted Unsigned,
 segmentationSupported BACnetSegmentation,
 vendorID Unsigned
}

Who-Is-Request ::= SEQUENCE {
 deviceInstanceRangeLowLimit [0] Unsigned (0..4194303) OPTIONAL,
 deviceInstanceRangeHighLimit [1] Unsigned (0..4194303) OPTIONAL
 -- must be used as a pair, see 16.10
}

WhoHas, I-Have
● Pair used for Device ID binding

– WhoHas Device ID? I-Have Device ID.
– WhoHas Object ID? I-Have Object ID.
– WhoHas Object Name? I-Have Object Name.

● MAC is derived from source address
● Routing information is derived from NPDU

WhoHas, I-Have

Who-Has-Request ::= SEQUENCE {
 limits SEQUENCE {
 deviceInstanceRangeLowLimit [0] Unsigned (0..4194303),
 deviceInstanceRangeHighLimit [1] Unsigned (0..4194303)
 } OPTIONAL,
 object CHOICE {
 objectIdentifier [2] BACnetObjectIdentifier,
 objectName [3] CharacterString
 }
}

I-Have-Request ::= SEQUENCE {
 deviceIdentifier BACnetObjectIdentifier,
 objectIdentifier BACnetObjectIdentifier,
 objectName CharacterString
}

TimeSynchronization
● Local Time Sync
● UTC Time Sync
● Can be used to update clock on clockless

devices.
● Usually designate only one device on a

network as a time master.

TimeSynchronization

TimeSynchronization-Request ::= SEQUENCE {
 time BACnetDateTime
}

UTCTimeSynchronization-Request ::= SEQUENCE {
 time BACnetDateTime
}

BACnetDateTime ::= SEQUENCE {
 date Date,
 time Time
}

ReinitializeDevice
● Used to cold or warm restart a device
● Password optional (in the clear)
● Additional passwords can be used to do

alternate activities, such as enable a new
ROM or go into Bootloader mode.

● Also used for Backup/Restore procedure

ReinitializeDevice

ReinitializeDevice-Request ::= SEQUENCE {
 reinitializedStateOfDevice [0] ENUMERATED {
 coldstart (0),
 warmstart (1),
 startbackup (2),
 endbackup (3),
 startrestore (4),
 endrestore (5),
 abortrestore (6)
 },
 password [1] CharacterString (SIZE (1..20)) OPTIONAL
}

BACnet-SimpleACK-PDU ::= SEQUENCE {
 pdu-type [0] Unsigned (0..15), -- 2 for this PDU type
 reserved [1] Unsigned (0..15), -- must be set to zero
 invokeID [2] Unsigned (0..255),
 service-ACK-choice [3] BACnetConfirmedServiceChoice
 -- Context-specific tags 0..3 are NOT used in header encoding
}

DeviceCommunicationControl
● Used to disable device communications
● After disabled, device can only respond to

– DeviceCommunicationControl Enable
– ReinitializeDevice
– Power cycle

DeviceCommunicationControl

DeviceCommunicationControl-Request ::= SEQUENCE {
 timeDuration [0] Unsigned16 OPTIONAL,
 enable-disable [1] ENUMERATED {
 enable (0),
 disable (1),
 disable-initiation (2)
 },
 password [2] CharacterString (SIZE(1..20)) OPTIONAL
}

BACnet-SimpleACK-PDU ::= SEQUENCE {
 pdu-type [0] Unsigned (0..15), -- 2 for this PDU type
 reserved [1] Unsigned (0..15), -- must be set to zero
 invokeID [2] Unsigned (0..255),
 service-ACK-choice [3] BACnetConfirmedServiceChoice
 -- Context-specific tags 0..3 are NOT used in header encoding
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

